
(This is impossible for CoT !)

Method

PENCIL : Long Thoughts with Short Memory
Chenxiao Yang, Nathan Srebro, David McAllester, Zhiyuan Li

 Experiments Theory

Toyota Technological Institute at Chicago (TTIC)

We train a small transformer (25M parameter, 2048 context length) to use
PENCIL to solve computationally intensive reasoning tasks (SAT, QBF,
Einstein’s Puzzle).

Performance: PENCIL outperforms CoT on NP-hard tasks SAT and QBF by a
large margin (i.e. almost perfect v.s. random guessing).

Time Efficiency: PENCIL significantly saves computations by reducing the
context length and converges faster during training.

Theorem (Main, Informal). For any Turing machine, there exists a fixed finite-
size transformer such that for any input, on which Turing machine uses steps
and space to compute, PENCIL with this transformer computes the same
output with generated tokens and using maximal context length.

T
S

𝒪(T) 𝒪(S)

PENCIL significantly reduces the maximal context length during inference
(e.g. CoT: 151,192 PENCIL: 3, 335 for Einstein’s Puzzle)⇒

I have discovered
a truly marvelous

proof of this
theorem, which this

margin is too
small to contain.

NO! You can show
it with a pencil
(and an eraser) !

Fermat, 1637

Yang et al., 2025 C [CALL] T [SEP] A [RETURN] ⇒ C A
 Reduction Rule (Erase):

 Scaling up the thoughts at test time can significantly improve the
reasoning capability of LLMs (e.g. GPT-o1/o3, DeepSeek R1) !

PENCIL: Long Thoughts with Short Memory

Chenxiao Yang Nathan Srebro David McAllester Zhiyuan Li
Toyota Technological Institute at Chicago

{chenxiao,nati,mcallester,zhiyuanli}@ttic.edu

Abstract

While recent works (e.g. o1, DeepSeek R1) have demonstrated great promise of using long
Chain-of-Thought (CoT) to improve reasoning capabilities of language models, scaling it up
during test-time is challenging due to ine!cient memory usage — intermediate computations
accumulate indefinitely in context even no longer needed for future thoughts. We propose
PENCIL, which incorporates a reduction mechanism into the autoregressive generation process,
allowing the model to recursively clean up intermediate thoughts based on patterns learned
from training. With this reduction mechanism, PENCIL significantly reduces the maximal
context length required during generation, and thus can generate longer thoughts with limited
memory, solving larger-scale problems given more thinking time. For example, we demonstrate
PENCIL achieves 97% accuracy on the challenging Einstein’s puzzle — a task even large models
like GPT-4 struggle with — using only a small 25M-parameter transformer with 2048 context
length. Theoretically, we prove PENCIL can perform universal space-e!cient computation by
simulating Turingmachines with optimal time and space complexity, and thus can solve arbitrary
computational tasks that would otherwise be intractable given context window constraints.

1 Introduction
Recently, there has been a surge of interest in reasoning with Chain-of-Thought (CoT) [Wei et al.,
2022] and generating longer thoughts at test-time to tackle larger-scale and more complicated
problems [OpenAI, 2024, Guo et al., 2025, Snell et al., 2024, Muennigho" et al., 2025]. CoT is an
iterative generation process: each intermediate reasoning step is appended to the current context and
treated as the input in subsequent reasoning. The context grows until reaching a final answer. While
such an iterative model is theoretically powerful – capable, in principle, of tackling many intricate
problems given unlimited length [Merrill and Sabharwal, 2023, Feng et al., 2024, Li et al., 2024b] – it
su"ers from the inherentwrite-only limitation: partial computation remains in the context evenwhen
no longer needed for future thought generation. This design becomes particularly problematic for
inherently hard reasoning tasks, where no e!cient algorithm exists and thus reasoning inevitably
spans many steps, forcing the context length to grow indefinitely. This not only demands excessive
memory resources that become impractical for computationally hard tasks, but could also degrades
the model’s ability to e"ectively retrieve information in the context, even when the maximum length
is not exceeded [Liu et al., 2024].
Memory management is a major issue in modern computer systems. Turing machines, for example,
can overwrite tape cells and reclaim space for new computations, while high-level programming
languages rely on stack frames, function calls, and garbage collection to discard unneeded data.
While some previous works have attempted to augment LLMs with external memory (e.g. [Gao

1

ar
X

iv
:2

50
3.

14
33

7v
1

 [c
s.L

G
]

18
 M

ar
 2

02
5

Applicability : PENCIL works as well on a natural-language reasoning task
called Einstein’s puzzle – a logic puzzle that even GPT-4 struggles with.

Step 1 : Turing Machine computation Next-token generation (CoT)⇔

Step 2 : Simulating TM space-efficiently with PENCIL

Step 3 : Can Transformers express the algorithm ?

• Each generated token represents a TM
transition step, encoding (state,
symbol, movement direction).

• Total Steps =
• Max Context Length =

𝒪(Time)
𝒪(Time)

• Simulation: generate tokens to simulate the step-by-step running of Turing
machine, starting from the previous state (i.e. TM’s configuration).

• Summarization: summarize all previously tokens into the new state using the
PENCIL reduction rule.

• Trigger the summarization whenever the length of current sequence exceeds
twice the actual space needed to store the information.

• Total Steps = , Max Context Length = 𝒪(Time) 𝒪(Space)

👇

Theorem (Informal). FASP =

This is the Proof !

• are special tokens
• C = Context, T = Thoughts, A = Answer (They can include special tokens!)
• Reduction is triggered when the sequence matches the pattern
• PENCIL iteratively generate thoughts and triggers reduction

[CALL], [SEP], [RETURN]

How PENCIL Works? (Example on QBF)

Training :

ℒCoT = − ∑ log p(next token |previous sequence)
ℒPENCIL = − ∑ log p(next token |reduced sequence)

Full-Access Sequence Processing (FASP)
A program in FASP is a process of building a
sequence of increasingly complex functions
(i.e. Transformers) .Σ* → ℝd

Corollary (Informal). With poly() context length, PENCIL can solve all
problems in PSPACE, while standard CoT can only solve problems in P.

n

• Each Variable = a Transformer.
• Each Line of Code = an operator from some

simpler Transformers to a more complex
Transformer.

• FASP predefines a set of local and non-local
operators, and supports custom operators.

 Model Generation (Write):

Fig. A program written in FASP

👉 : a Transformer expresses Step 2 a FASP program implements Step 2∃ ⇔ ∃

🚀

What is PENCIL ?

C1 ⇒ C1 C2 [CALL] T [SEP] A [RETURN]

BUT, very long CoT causes problems such as excessive memory, slow
inference, attention dilution, etc. Is standard CoT fundamentally limited?

Important : Special tokens can accumulate similar with nested function calls in
functional programming!

PENCIL can do (tail) recursion,
backtrack, decomposition, etc.

