
PENCIL: Long Thoughts with Short Memory

Chenxiao Yang

@FLaNN
May 26th, 2025

2

Zhiyuan LiNathan Srebro David McAllester

Chain-of-Thought (CoT)

3

Chain-of-Thought generates a series of thoughts before providing
the final answer.

The Power of Long CoT

4

Long CoT empowers transformers to solve computationally more intensive
tasks (Feng et al. 2024, Merill et al. 2024, Li et al. 2024, etc.)

S1, Muennighoff et al., 2025

 More Test-Time Computes
Performance of O3 on ARC-AGI-Pub

B
et

te
r

Sc
or

e ☝O3

O1

O1-Preview

Long CoT is great! BUT …

5

• Out-of-Memory: Accumulated
thoughts will exceed model’s effective
context windows.

• Large Cost: Self-attention makes
generating each new token
prohibitively expensive.

• Low Accuracy: Relevant
information becomes buried and
hard to retrieve (Liu et al. 2024, Ye at
al. 2025, etc.)Image adapted from Hao et al., 2024

Most Intermediate Steps are “Erasable”

6

Theorem. 
There are infinitely many prime numbers.

• Math
Question: “Your mother has 4 children: North,
South, East—what’s the 4th child’s name?”

• LLM Reasoning (from DeepSeek-R1 run)

Lemma.
Every integer n> 1 has a prime p divisor.

Proof of Lemma. Take the smallest divisor p>1
of n. If p were composite, it would factor as ab
with 1<a,b<p, contradicting minimality. Hence p
is prime and divides n. ∎

Proof of Theorem. Assume, for contradiction,
that the complete list of primes is p_1, … ,p_k.
Set N = p_1p_2 … p_k + 1. By the lemma, N has
some prime divisor q. But every p_i leaves
remainder 1 when dividing N, so none of them
divides N; hence q is a new prime, contradicting
completeness. Therefore primes are infinite. ∎

No longer useful

Alright, since the three children already named
—North, South, and East—correspond precisely
to three of the four cardinal directions, it seems
perfectly logical to complete the compass
pattern by concluding that the fourth child must
therefore be named West.

Wait — maybe it’s a trick: “your mother” means
you are the fourth child.

Wait — the question wants a *name*, so the
answer is actually *your own name*.

→ Final answer: your name.

No longer useful

7

Turing Machine (1936)

“Erasure” is Fundamental to Computation

Modern Computer

One Step of Thinking One Step of Computation⇔

✒
+ CoT

❌✏
+ PENCILTransformer

PENCIL ENables Context-
efficient Inference

and Learning

PENCIL

What is ✏ PENCIL?

9

 Model Generation (Write)

Autoregressive Next-token GenerationAutoregressive Next-token Generation

 Reduction Rule (Erase)

?
Functional Programming

What is ✏ PENCIL?

10

C [CALL] T [SEP] A [RETURN] ⇒ C A

 Reduction Rule (Erase) Model Generation (Write)

Context ∈ Σ* Thoughts ∈ Σ* Answer ∈ Σ*

Special Tokens

Context ∈ Σ* Thoughts ∈ Σ* Answer ∈ Σ*

• PENCIL iteratively generate thoughts and triggers reduction.

• Reduction is triggered when the sequence matches the pattern

Special TokensSpecial Tokens

Example 1: Arithmetic Expression Evaluation

11

A toy store put together party bags for a birthday. They made 3
blue bags with 5 toys each and 2 red bags with 4 toys each. How
many toys were used in total?

A toy store put together party bags for a birthday. They made 3
blue bags with 5 toys each and 2 red bags with 4 toys each. How
many toys were used in total? [CALL] Let's break this problem down
into parts! [CALL] First, let's figure out how many toys were in
all blue bags. Looking at the blue bags, they made 3 bags with 5
toys in each, so multiplying 3 × 5 = 15. [SEP] There were 15 toys
in all blue bags. [RETURN]

A toy store put together party bags for a birthday. They made 3
blue bags with 5 toys each and 2 red bags with 4 toys each. How
many toys were used in total? [CALL] Let's break this problem down
into parts! [CALL] First, let's figure out how many toys were in
all blue bags. Looking at the blue bags, they made 3 bags with 5
toys in each, so multiplying 3 × 5 = 15. [SEP] There were 15 toys
in all blue bags. [RETURN]

A toy store put together party bags for a birthday. They made 3
blue bags with 5 toys each and 2 red bags with 4 toys each. How
many toys were used in total? [CALL] Let's break this problem down
into parts! [CALL] First, let's figure out how many toys were in
all blue bags. Looking at the blue bags, they made 3 bags with 5
toys in each, so multiplying 3 × 5 = 15. [SEP] There were 15 toys
in all blue bags. [RETURN]

A toy store put together party bags for a birthday. They made 3
blue bags with 5 toys each and 2 red bags with 4 toys each. How
many toys were used in total? [CALL] Let's break this problem down
into parts! [CALL] First, let's figure out how many toys were in
all blue bags. Looking at the blue bags, they made 3 bags with 5
toys in each, so multiplying 3 × 5 = 15. [SEP] There were 15 toys
in all blue bags. [RETURN]

A toy store put together party bags for a birthday. They made 3
blue bags with 5 toys each and 2 red bags with 4 toys each. How
many toys were used in total? [CALL] Let's break this problem down
into parts! [CALL] First, let's figure out how many toys were in
all blue bags. Looking at the blue bags, they made 3 bags with 5
toys in each, so multiplying 3 × 5 = 15. [SEP] There were 15 toys
in all blue bags. [RETURN]

A toy store put together party bags for a birthday. They made 3
blue bags with 5 toys each and 2 red bags with 4 toys each. How
many toys were used in total? [CALL] Let's break this problem down
into parts! There were 15 toys in all blue bags.

A toy store put together party bags for a birthday. They made 3
blue bags with 5 toys each and 2 red bags with 4 toys each. How
many toys were used in total? [CALL] Let's break this problem down
into parts! There were 15 toys in all blue bags. [CALL] That's just
part of the story though - we still need to know how many toys were
in all red bags. Looking at the red bags, they made 2 bags with 4
toys in each, so multiplying 2 × 4 = 8. [SEP] There were 8 toys in
all red bags. [RETURN]

A toy store put together party bags for a birthday. They made 3
blue bags with 5 toys each and 2 red bags with 4 toys each. How
many toys were used in total? [CALL] Let's break this problem down
into parts! There were 15 toys in all blue bags. There were 8 toys
in all red bags.

A toy store put together party bags for a birthday. They made 3
blue bags with 5 toys each and 2 red bags with 4 toys each. How
many toys were used in total? [CALL] Let's break this problem down
into parts! There were 15 toys in all blue bags. There were 8 toys
in all red bags. Now that we know both amounts, we can find the
total toys by adding the toys from blue and red bags together: 15 +
8 = 23. [SEP] There were 23 toys used in total. [RETURN]

A toy store put together party bags for a birthday. They made 3
blue bags with 5 toys each and 2 red bags with 4 toys each. How
many toys were used in total? There were 23 toys used in total.

C [CALL] T [SEP] A [RETURN] ⇒ C A

This is a hypothetical example for illustration purpose

Example 1: Arithmetic Expression Evaluation

12

Example 1: Arithmetic Expression Evaluation

13

☝Hidden CoT

✒ CoT: length ∝ exp(n) ✏ PENCIL: length ∝ poly(n)

14

∃X2∀X1:(X2⋁¬X2⋁X1)⋀(X1⋁X2)⋀(X2)⋀(¬X2⋁¬X1)⋀(X1⋁¬X1)⋀(¬X1⋁¬X2)∃X2∀X1:(X2⋁¬X2⋁X1)⋀(X1⋁X2)⋀(X2)⋀(¬X2⋁¬X1)⋀(X1⋁¬X1)⋀(¬X1⋁¬X2) [CALL] Try
X2=False [CALL] Try X1=False [CALL] Evaluate X1=False X2=False, 1st
clause is True, 2nd clause is False [SEP] Answer is False [RETURN]

∃X2∀X1:(X2⋁¬X2⋁X1)⋀(X1⋁X2)⋀(X2)⋀(¬X2⋁¬X1)⋀(X1⋁¬X1)⋀(¬X1⋁¬X2) [CALL] Try
X2=False [CALL] Try X1=False Answer is False
∃X2∀X1:(X2⋁¬X2⋁X1)⋀(X1⋁X2)⋀(X2)⋀(¬X2⋁¬X1)⋀(X1⋁¬X1)⋀(¬X1⋁¬X2) [CALL] Try
X2=False [CALL] Try X1=False Answer is False [SEP] Answer is False
[RETURN]

∃X2∀X1:(X2⋁¬X2⋁X1)⋀(X1⋁X2)⋀(X2)⋀(¬X2⋁¬X1)⋀(X1⋁¬X1)⋀(¬X1⋁¬X2) [CALL] Try
X2=False Answer is False
∃X2∀X1:(X2⋁¬X2⋁X1)⋀(X1⋁X2)⋀(X2)⋀(¬X2⋁¬X1)⋀(X1⋁¬X1)⋀(¬X1⋁¬X2) [CALL] Try
X2=False Answer is False, Try X2=True [CALL] Try X1=False [CALL]
Evaluate X1=False X2=True, 1st clause is True, 2nd clause is True, 3rd
clause is True, 4th clause is True, 5th clause is True [SEP] Answer is
True [RETURN]

∃X2∀X1:(X2⋁¬X2⋁X1)⋀(X1⋁X2)⋀(X2)⋀(¬X2⋁¬X1)⋀(X1⋁¬X1)⋀(¬X1⋁¬X2) [CALL] Try
X2=False Answer is False, Try X2=True [CALL] Try X1=False Answer is True
∃X2∀X1:(X2⋁¬X2⋁X1)⋀(X1⋁X2)⋀(X2)⋀(¬X2⋁¬X1)⋀(X1⋁¬X1)⋀(¬X1⋁¬X2) [CALL] Try
X2=False Answer is False, Try X2=True [CALL] Try X1=False Answer is True
,Try X1=True [CALL] Evaluate X1=True X2=True, 1st clause is True, 2nd
clause is True, 3rd clause is False [SEP] Answer is False [RETURN]

∃X2∀X1:(X2⋁¬X2⋁X1)⋀(X1⋁X2)⋀(X2)⋀(¬X2⋁¬X1)⋀(X1⋁¬X1)⋀(¬X1⋁¬X2) [CALL] Try
X2=False Answer is False, Try X2=True [CALL] Try X1=False Answer is True
,Try X1=True Answer is False

∃X2∀X1:(X2⋁¬X2⋁X1)⋀(X1⋁X2)⋀(X2)⋀(¬X2⋁¬X1)⋀(X1⋁¬X1)⋀(¬X1⋁¬X2) [CALL] Try
X2=False Answer is False, Try X2=True [CALL] Try X1=False Answer is True
,Try X1=True Answer is False [SEP] Answer is False [RETURN]

∃X2∀X1:(X2⋁¬X2⋁X1)⋀(X1⋁X2)⋀(X2)⋀(¬X2⋁¬X1)⋀(X1⋁¬X1)⋀(¬X1⋁¬X2) [CALL] Try
X2=False Answer is False, Try X2=True Answer is False
∃X2∀X1:(X2⋁¬X2⋁X1)⋀(X1⋁X2)⋀(X2)⋀(¬X2⋁¬X1)⋀(X1⋁¬X1)⋀(¬X1⋁¬X2) [CALL] Try
X2=False Answer is False, Try X2=True Answer is False [SEP] Answer is
False [RETURN]

∃X2∀X1:(X2⋁¬X2⋁X1)⋀(X1⋁X2)⋀(X2)⋀(¬X2⋁¬X1)⋀(X1⋁¬X1)⋀(¬X1⋁¬X2)Answer is False

Example 2: Quantified Boolean Formula (QBF)

15

Max Sequence Length Comparison (CoT v.s. PENCIL)

PENCIL significantly reduces the maximal context length during inference

(0.004 when n=10 on QBF) ×

QBF3-SAT
(a special case of QBF)

Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought

Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought
Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought Thought

☝

How does PENCIL perform?

Experimental Setting: Training and Inference

18

We train a small transformer (25M parameter, 2048 context length) from scratch.

 complete sequence)ℒCoT = − ∑ log p(next token |

 reduced sequence)ℒPENCIL = − ∑ log p(next token |

Training: Key difference between CoT and PENCIL Data Generation*⇒

* Datasets are generated by running specialized algorithms

Inference: C [CALL] T [SEP] A [RETURN] ⇒ C A

Preserve the KV cache of Context (C) and recompute that for Answer (A)

19

Performance Comparison on 3-SAT and QBF

✏PENCIL significantly outperforms ✒CoT on NP-hard tasks SAT and QBF
(i.e. almost perfect v.s. random guessing).

n = 3 4 5 6 7 8 9 10

Baseline 66 57 46 51 46 51 49 51

CoT 100 100 100 99 84 63 54 50

PENCIL 100 100 100 99 99 100 100 100

3-SAT

n = 3 4 5 6 7 8 9 10

Baseline 90 82 85 68 60 69 71 66

CoT 100 100 97 94 74 72 69 73

PENCIL 100 100 100 100 100 100 100 100

QBF

20

Convergence Speed (CoT v.s. PENCIL)

✏PENCIL converges faster and is more sample efficient.

QBF n=4 QBF n=5 QBF n=6

21

For Each Token, (prefix for ✏) << (prefix for ✒)len len

✏PENCIL is computationally more efficient than ✒CoT.

QBF n=4 QBF n=5 QBF n=6

22

Example 3: Einstein’s Puzzle

* The original Einstein’s Puzzle has 5 categories

Solution :

Answer:

 House # 1 2 3
 Color
 Nationality
 Pet

Solution :

Answer: the Brit owns the fish

 House # 1 2 3
 Color Red Blue Green
 Nationality Swede German Brit
 Pet Dogs Birds Fish

✏

(a) Solve each constraint as a
subtask and erase the thoughts.

(b) Summarize state changes
and update possibilities.

(c) Branch and backtrack for
the remaining possibilities.

23

Example 3: Einstein’s Puzzle

24

C [CALL] T [SEP] [CALL] T' [RETURN] ⇒ C [CALL] T'

Long Thoughts Summarized Thoughts

Special Usage: Summarization

Tail recursion in functional programming:

The “returned value” is another “function call” A (Answer) = [CALL] T’ ⇒

25

Performance on Einstein’s Puzzle

✏PENCIL solves Einstein’s puzzle almost perfectly – a logic puzzle that
even GPT-4 struggles with.

(Max context length, CoT = 151,192 PENCIL = 3, 335)

Puzzle Size CoT PENCIL

5 × 5 25 97

4 × 4 34 100

3 × 3 99 99

☝

26

Test-Time Scalability

Given more inference time, ✏PENCIL can solve larger-sized problems.

3-SAT QBF Einstein’s Puzzle

How about other tasks beyond 3-SAT, QBF, Einstein’s Puzzle?

PENCIL Can Perform
Universal Space / Time-
Efficient Computation!

How Powerful is
PENCIL?

✒CoT is Turing-Complete, but Inefficiently

28

Theorem (Merrill et al. 24, Joshi at al. 25, etc.)
For any Turing machine , there exists a finite-size decoder-only transformer
such that ✒CoT with this transformer simulates the Turing machine with
• Total number of generated tokens = Maximal context length =

𝖳𝖬

𝒪(T)

’s Tape𝖳𝖬 Token
Sequence

A Transition Step A New Token

Space = 4 #Tokens = 5

Universal Efficient Computation Power of ✏PENCIL

29* finite size and finite parameter precision, but infinite precision in forward pass. Also assumes average-hard attention.

Theorem (Main, Informal)*
For any Turing machine, there exists a finite-size decoder-only transformer such
that for any input, on which Turing machine uses steps and space to
compute, ✏PENCIL with this transformer computes the same output with
1. Total number of generated tokens =
2. Maximal context length =

T S

𝒪(T)
𝒪(S)

• For complex problems, typically

• PENCIL is Turing-complete with optimal time and space complexity

• PENCIL can solve ANY computable tasks efficiently

S ≪ T

30

Universal Efficient Computation Power of ✏PENCIL

Corollary (Informal)
With poly() context length, ✏PENCIL can solve all problems in ,
while standard ✒CoT can only solve problems in .

n 𝖯𝖲𝖯𝖠𝖢𝖤
𝖯

𝖯 𝖭𝖯 𝖯𝖲𝖯𝖠𝖢𝖤✒ ✏

• : Problems solvable in polynomial time.

• : Problems solvable using polynomial space, regardless of time.

𝖯

𝖯𝖲𝖯𝖠𝖢𝖤

Strategy: Iterative “Think” and “Summarize”

31

• Step : simulating a computation step of TM
• State : the current configuration of TM (written symbols)

When to Summarize?

32

When? Never (✒) Every Step (✏) 2|T’|< |T| (✏)

Tokens
Generated O(Time) ✅ O(Time × Space) ❌ O(Time) ✅

Max Context
Length O(Time) ❌ O(Space) ✅ O(Space) ✅

BUT, can transformers automatically detect when to
summarize / erase ?

Recall we use to summarize.[CALL] T [SEP] [CALL] T' [RETURN] ⇒ [CALL] T'

Length exceeds
twice the actual
needed space.

Proof Technique: FASP (Full-Access Sequence Processing)

33

• Each Variable = a transformer

Lemma (Informal)
Programs in All finite-size transformer functions𝖥𝖠𝖲𝖯 =

This is the Proof !A FASP program describes a process
of constructing transformers

• Returned Variable = the target
transformer one aims to construct

• Each Line of Code = an operator
from simpler transformers to a more
complex transformer

a variable

returned variable

a line of code

Future Directions & Open Questions

• How to incorporate PENCIL into real-world LLM systems? How to
more effectively teach them to reason in a structured way?

34

• Does there exist other “erasing” mechanisms (e.g. other reduction
rules) that are even more efficient than PENCIL?

• Are there any other perspectives from which theories in TCS can
help guide practice?

Takeaways

1. We propose ✏ PENCIL, a new LLM reasoning paradigm that iteratively
generates and erases thoughts using the reduction rule:

3. Empirically, ✏ PENCIL enables longer and deeper thinking using shorter
context, and thus can scale up to handle more complicated tasks.

4. Theoretically, ✏ PENCIL is Turing-complete with optimal space and time
complexity, and thus can solve arbitrary computable problems efficiently.

35

C [CALL] T [SEP] A [RETURN] ⇒ C A

Thanks !

