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Background and Model Formulation

- MLP v.s. GNN : Architectural Connection

GNN formulation 1n a general form that explicitly disentangles each layer into two
operations, namely a Message-Passing (MP) operation and then a Feed-Forwarding
(FF) operation. After removing all the MP operations, GNN models become an
with a series of FF layers.

GNN  (MP): h{™" = > ag(w,v) - bV, (FF): b =y (h()

veN Ulu}

(FF): =y (b0~

- MLLP - (?) - GNN : Propagational MLP (PMLP)

PMLP 1s an intermediate class of models between and GNN. It adopts the
architecture during training, and then uses the GNN architecture for inference.
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- Instantiations of PMLP

The instantiation of PMLP depends on the architecture of its GNN counterpart and
allows the training-time architecture to be other models (such as MLP + residual
connection). See examples in the table below.

PMLP can be implemented in many different ways with a lot of flexibility, and the
simplest version only requires one line of code. Check codes with quick guide by
scanning the following QR code or entering https://github.com/chr26195/PMLP

Model | Train and Valid | Inference
E E MLP | ’ MLP
- PMLPgcn | o | GON: pOMP({hS Y enugu)
r PMLP oo | ML= Yx) | SGC: ¢ (Multi-MP({, }vev))
PMLPsppnp | | APPNP: Multi-MP(¢({Xy }oev))
E I PMLPconrr | ResNet | GCNII
PMLP xnet | MLP+JK | JKNet

(Codes with Quick Guide)

Empirical Evaluation

Theoretical Analysis

We compare PMLP with MLP and GNN in inductive node classification tasks.
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Dataset Cora Citeseer Pubmed A-Photo A-Computer  Coauthor-CS  Coauthor-Physics
#Nodes 2,708 3,327 19,717 7,650 13,752 18,333 34,493

é GCN | 74.82+1.09 67.60+0.96 76.56+0.85 89.69+0.87 78.79+1.62 91.79+0.35 91.22 £+ 0.18

o SGC | 73.96£0.59 67.34+0.54 76.00+0.59 83.42+247 77.10+2.54 91.24+0.59 89.18 £ 0.46
APPNP | 75.02+2.17 66.58+0.77 76.48+0.49 89.51+0.86 78.29+0.55 91.64+0.34 91.80 £0.77
MLP | 55.30+0.58 56.20+1.27 70.76+0.78 75.61+0.63 63.07+1.67 87.51+0.51 85.09 £4.11
PMLPgcon | 75.86 £0.93 68.00+0.70 76.06 £0.55 89.10+0.88 78.05+1.21 91.76 £0.27 91.35+0.82
AgNN +1.39% +0.59% —0.65% —0.66% —0.94% —0.03% +0.14%

& Amrp +37.18% +21.00% +7.49% +17.84% +23.75% +4.86% +7.36%

g PMLPgsgc | 75.04 £0.95 67.66+0.64 76.02+0.57 86.50+1.40 74.72+3.86 91.09+0.50 89.34+1.40
AGNN +1.46% +0.48% +0.03% +3.69% —3.09% —0.16% +0.18%
Aprp +35.70% +20.39% +7.43% +14.40% +18.47% +4.09% +4.99%
PMLP s pp | 75.84+1.36 67.52+082 76.30+1.44 8847+1.64 78.07+210 91.64+046 91.96+0.51
AgNN +1.09% +1.41% —0.24% -1.16% —0.28% +0.00% +0.17%
ApmLp +37.14% +20.14% +7.83% +17.01% +23.78% +4.72% +8.07%

- Phenomenon 1: PMLP significantly outperforms MLP
PMLP shares the same trained weights with a vanilla MLP, but generalizes better and
thereby outperforms MLP by a large margin. This observation suggests that :

message passing layers in GNNs inherently improve model’s
generalization capability for handling unseen samples.

- Phenomenon 2: PMLP performs on par with GNNs.

PMLP achieves close testing performance to its GNN counterpart in inductive node
classification tasks, and can even outperform GNN by a large margin in some cases.
This observation suggests that

the major source of GINNs’ success in node classification stems
from their inherent generalization capability.

- Additional Discussions

We have also discussed: (1) model depth, (2) model width, 3) FF implementation, (4)
MP implementation, (5) graph sparsity, (6) noisy structure, (7) over-smoothing,
residual connection, (9) heterophily ...
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- NTK perspective on MLP, PMLP and GNN

NTK perspective allows us to conveniently study the inherent effects of model
architectures due to disentanglement of weights and kernel feature map. From this
perspective, PMLP corresponds to transforming the kernel feature map of MLLP to that
of GNN, while fixing trained MLP weights.

fmlp(X) — W;;Tlp mlp(X)

Jomip(X) =

T
Wmlp ¢gnn(x)

Fonn(X) = Wopy (%)

- Effects of Model Architectures in Extrapolation

Theorem 4. Suppose fpm1,() is an infinitely-wide two-layer MLP with ReLU activation trained
using squared loss, and adds average message passing layer before each feed-forward layer in the
testing phase. For any direction v € R? and step size At > 0, let Tq = tv, and as t — oo, we have

(fpmlp(wo + At'v) —

where c,, is the same constant as in Theorem 3, JO
g, and d; is the node degree of its neighbors.
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= d is the node degree (with self-connection) of

Interpretation: Similar to MLP, both PMLP and GNN (with sum/mean pooling)
converge to linear functions when testing samples are far away from the training data.

Theorem S. Suppose all node features are normalized, and the cosine similarity of node x; and the

average of its neighbors is deonoted as o; € [0, 1].

(fomip(To + Atv) — fpmip(To)) /Al

Co Zz‘éNgU{O}(J - d;) 1

where oumin = min{a; }ien,ugoy € [0,1], and dmas > 1 denotes the maximum node degree in the

testing node x’s neighbors (including itself).
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Then, the convergence rate for fpmip(x) is

—0 (1 + mam - \/1 o amzn) . (10)

Interpretation: PMLP and GNN’s convergence rates (to linear models) are smaller
than MLP due to message passing at each layer. This indicates they are less more
vulnerable to linearalization, and prone to generalize better on testing samples near

the training data.


https://github.com/chr26195/PMLP

